

RETURN – Monitoring Amazon Rainforest Recovery Capacity with terabytes of RADAR satellite images processed on EOSC infrastructures

Milutin Milenković

with contributions from:

Raymond Oonk, SURF (Samenwerkende Universitaire Reken Faciliteiten), The Netherlands Wanda De Keersmaecker, VITO (Flemish Institute for Technological Research), Belgium Johannes Reiche, Wageningen University, The Netherlands Prof. Martin Herold, GFZ German Research Centre for Geosciences, Germany Jan Verbesselt, The Belgian Science Policy Office (BELSPO), Belgium

Milutin Milenković (milenkovic@iiasa.ac.at)

Novel Data Ecosystems for Sustainability (NODES), IIASA

Geo-information Science and Remote Sensing Lab, Wageningen University

5. December 2022, EOSC Webinar

Pan-European digital assets supporting research communities – Benefits & opportunities

Session: Digital assets supporting SDG 13: Climate action

Resilience

Non-disturbed

Credit: Unsplash/ Vlad Hilitanu

Credit: www.earthjournalism.net

Credit: www.earthjournalism.net

Challenges & research questions:

- What are the characteristics of signal recovery indices?
- What EO signal properties are related to forest recovery?
- What Big EO data approaches are available for upscaling?

-6

-7

-8

- -9

- -10

- -11

3

4

Analysis Framework for Sentinel-1 Time Series

Index interrelation

C-SCALE: Implementation Framework

C-SCALE: Implementation Framework

🔮 generalized_TS_categories_anal...

5 months ag

C-SCALE: Computational Setup

Multi-level Spatial Indices:

- 106 Equi7Grid Tiles 300 x 300 km²
- 18170 Processing chunks (1000 x 1000 pixels) x ~1050 images
- 18.1 billion of pixels 20 x 20 m in size

Processing characteristics:

- 200 concurrent jobs (800 max)
- ~11h processing time / single chunk \Box 36.4 km²/h
- 3 cores/job
- 0.6 M CPUh and 41 day in total

C-SCALE: Preliminary Results

5. Dec. 2022 EOSC Webinar

Conclusions

Interface – built by the user

- Time-consuming to build ٠
- Potential barrier for a general user ٠

Data – transfer is required

- Data transfer is error prone ٠
- Code flexible & manual upscale
- Debugging friendly ٠
- Taking care of upscaling ٠

	openEO Platform	C-SCALE	GEE
User Interface	In-place	Build by user	In-place
Data	In-place	Data transfer required	In-place
Code	Predefined + UDFs	Flexible	Predefined
Upscaling	Automatic	Manual	Automatic
Reproducibility	Fully	Fully	?

International Institute for Applied Systems Analysis

Thank you!

Milutin Milenković (milenkovic@iiasa.ac.at) Novel Data Ecosystems for Sustainability, IIASA

